Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
2.
BMC Cancer ; 21(1): 1154, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711195

RESUMO

Homologous recombination and DNA repair are important for genome maintenance. Genetic variations in essential homologous recombination genes, including BRCA1 and BRCA2 results in homologous recombination deficiency (HRD) and can be a target for therapeutic strategies including poly (ADP-ribose) polymerase inhibitors (PARPi). However, response is limited in patients who are not HRD, highlighting the need for reliable and robust HRD testing. This manuscript will review BRCA1/2 function and homologous recombination proficiency in respect to breast and ovarian cancer. The current standard testing methods for HRD will be discussed as well as trials leading to approval of PARPi's. Finally, standard of care treatment and synthetic lethality will be reviewed.


Assuntos
Neoplasias da Mama/genética , Genes BRCA1/fisiologia , Genes BRCA2/fisiologia , Recombinação Homóloga/fisiologia , Neoplasias Ovarianas/genética , Reparo de DNA por Recombinação/fisiologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Variação Genética , Humanos , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/fisiologia
3.
Front Immunol ; 12: 712556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367175

RESUMO

Poly (adenosine diphosphate-ribose) polymerases (PARPs) are a family of proteins responsible for transferring ADP-ribose groups to target proteins to initiate the ADP-ribosylation, a highly conserved and fundamental post-translational modification in all organisms. PARPs play important roles in various cellular functions, including regulating chromatin structure, transcription, replication, recombination, and DNA repair. Several studies have recently converged on the widespread involvement of PARPs and ADP-Ribosylation reaction in mammalian innate immunity. Here, we provide an overview of the emerging roles of PARPs family and ADP-ribosylation in regulating the host's innate immune responses involved in cancers, pathogenic infections, and inflammations, which will help discover and design new molecular targets for cancers, pathogenic infections, and inflammations.


Assuntos
Imunidade Inata/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Reparo do DNA , Humanos , Inflamação/imunologia , Proteínas de Membrana/fisiologia , Terapia de Alvo Molecular , NF-kappa B/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/imunologia , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Grânulos de Estresse/metabolismo , Estresse Fisiológico , Transcrição Gênica , Resposta a Proteínas não Dobradas , Viroses/imunologia
4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925170

RESUMO

Poly(ADP-ribose) polymerase 2 (PARP2) participates in base excision repair (BER) alongside PARP1, but its functions are still under study. Here, we characterize binding affinities of PARP2 for other BER proteins (PARP1, APE1, Polß, and XRCC1) and oligomerization states of the homo- and hetero-associated complexes using fluorescence-based and light scattering techniques. To compare PARP2 and PARP1 in the efficiency of PAR synthesis, in the absence and presence of protein partners, the size of PARP2 PARylated in various reaction conditions was measured. Unlike PARP1, PARP2 forms more dynamic complexes with common protein partners, and their stability is effectively modulated by DNA intermediates. Apparent binding affinity constants determined for homo- and hetero-oligomerized PARP1 and PARP2 provide evidence that the major form of PARP2 at excessive PARP1 level is their heterocomplex. Autoregulation of PAR elongation at high PARP and NAD+ concentrations is stronger for PARP2 than for PARP1, and the activity of PARP2 is more effectively inhibited by XRCC1. Moreover, the activity of both PARP1 and PARP2 is suppressed upon their heteroPARylation. Taken together, our findings suggest that PARP2 can function differently in BER, promoting XRCC1-dependent repair (similarly to PARP1) or an alternative XRCC1-independent mechanism via hetero-oligomerization with PARP1.


Assuntos
Reparo do DNA/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , DNA/química , Dano ao DNA/fisiologia , DNA Polimerase beta/genética , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Mapas de Interação de Proteínas , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
5.
Cell Death Dis ; 11(11): 954, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159039

RESUMO

Parp3 is a member of the Poly(ADP-ribose) polymerase (Parp) family that has been characterized for its functions in strand break repair, chromosomal rearrangements, mitotic segregation and tumor aggressiveness. Yet its physiological implications remain unknown. Here we report a central function of Parp3 in the regulation of redox homeostasis in continuous neurogenesis in mice. We show that the absence of Parp3 provokes Nox4-induced oxidative stress and defective mTorc2 activation leading to inefficient differentiation of post-natal neural stem/progenitor cells to astrocytes. The accumulation of ROS contributes to the decreased activity of mTorc2 as a result of an oxidation-induced and Fbxw7-mediated ubiquitination and degradation of Rictor. In vivo, mTorc2 signaling is compromised in the striatum of naïve post-natal Parp3-deficient mice and 6 h after acute hypoxia-ischemia. These findings reveal a physiological function of Parp3 in the tight regulation of striatal oxidative stress and mTorc2 during astrocytic differentiation and in the acute phase of hypoxia-ischemia.


Assuntos
Astrócitos/citologia , Diferenciação Celular , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , NADPH Oxidase 4/metabolismo , Neurogênese , Poli(ADP-Ribose) Polimerases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Astrócitos/metabolismo , Regulação da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 4/genética , Transdução de Sinais
6.
Mol Cell Endocrinol ; 518: 110946, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679243

RESUMO

Embryo implantation is a very complex process and several factors play important roles. Using a mouse model, we investigated the functions of PARP-2 and caspase-8 during endometrial receptivity for blastocyst implantation. We found that PARP-2 was upregulated at the receptive stage's implantation region and predominantly expressed in the endometrial stromal region, but downregulated during pregnancy failure and pseudopregnancy. To reinforce the necessity of PARP-2 for embryo implantation, we pharmacologically inhibited PARP-2 'before' & 'after' embryo arrival and observed a reduction in blastocyst implantation. Conversely, elevated caspase-8 expression and activity during pseudopregnancy, delayed implantation, and embryo implantation failure conditions and decreased levels in the decidualization exhibited an inverse pattern with PARP-2, suggesting caspase-8 as a negative regulator for embryo implantation. In vitro caspase-8 downregulates the PARP-2 activity in the mouse endometrial epithelial and stromal cells. These data suggest that PARP-2 and its negative regulation by caspase-8 constitute a crucial step in embryo implantation.


Assuntos
Caspase 8/metabolismo , Implantação do Embrião/genética , Endométrio/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Células Cultivadas , Regulação para Baixo , Embrião de Mamíferos , Endométrio/metabolismo , Feminino , Masculino , Camundongos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Gravidez , Processamento de Proteína Pós-Traducional
7.
Biomed Pharmacother ; 130: 110536, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32688139

RESUMO

In the last three months, the whole scientific community has shifted its focus to the fight against the COVI-2 infection (COVID-19) trying to use different medications to save the patients' life. In some studies, the results were completely inconclusive, as in the case of chloroquine. However, the recent discovery on benefits deriving from use of such anticoagulants for Covid-19 patients, has increased the success of patients' treatment. Among lots of old and new drugs, PARP-inhibitors were not considered as possible option in the treatment of Covi-2 infection, being the latter able to induce the inflammatory and thrombotic cascades. Since PARP-inhibitors are able to reduce and block mechanisms leading to thrombosis and inflammation, they could be used as antithrombotic medications. Therefore, the present brief report is aimed to open the discussion on the potentials of PARP-inhibitors in non-oncological settings, like Covid-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/sangue , Fibrinolíticos/uso terapêutico , Pandemias , Pneumonia Viral/sangue , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Trombofilia/tratamento farmacológico , Trombose/prevenção & controle , Anti-Inflamatórios/farmacologia , COVID-19 , Infecções por Coronavirus/complicações , Reposicionamento de Medicamentos , Fibrinolíticos/farmacologia , Humanos , Inflamação , Pneumonia Viral/complicações , Poli(ADP-Ribose) Polimerase-1/fisiologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/fisiologia , SARS-CoV-2 , Trombofilia/etiologia
8.
Sci Rep ; 10(1): 651, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959836

RESUMO

Changes in nicotinamide adenine dinucleotide (NAD+) levels that compromise mitochondrial function trigger release of DNA damaging reactive oxygen species. NAD+ levels also affect DNA repair capacity as NAD+ is a substrate for PARP-enzymes (mono/poly-ADP-ribosylation) and sirtuins (deacetylation). The ecto-5'-nucleotidase CD73, an ectoenzyme highly expressed in cancer, is suggested to regulate intracellular NAD+ levels by processing NAD+ and its bio-precursor, nicotinamide mononucleotide (NMN), from tumor microenvironments, thereby enhancing tumor DNA repair capacity and chemotherapy resistance. We therefore investigated whether expression of CD73 impacts intracellular NAD+ content and NAD+-dependent DNA repair capacity. Reduced intracellular NAD+ levels suppressed recruitment of the DNA repair protein XRCC1 to sites of genomic DNA damage and impacted the amount of accumulated DNA damage. Further, decreased NAD+ reduced the capacity to repair DNA damage induced by DNA alkylating agents. Overall, reversal of these outcomes through NAD+ or NMN supplementation was independent of CD73. In opposition to its proposed role in extracellular NAD+ bioprocessing, we found that recombinant human CD73 only poorly processes NMN but not NAD+. A positive correlation between CD73 expression and intracellular NAD+ content could not be made as CD73 knockout human cells were efficient in generating intracellular NAD+ when supplemented with NAD+ or NMN.


Assuntos
5'-Nucleotidase/metabolismo , 5'-Nucleotidase/fisiologia , Dano ao DNA , Reparo do DNA , NAD/metabolismo , NAD/fisiologia , Poli ADP Ribosilação , Poli(ADP-Ribose) Polimerases/fisiologia , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , 5'-Nucleotidase/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
9.
Cells ; 8(9)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500199

RESUMO

Poly(ADP-ribosyl)ation (PARylation) is an essential post-translational modification catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. Poly(ADP-ribose) polymerase 1 (PARP1) is a well-characterized member of the PARP family. PARP1 plays a crucial role in multiple biological processes and PARP1 activation contributes to the development of various inflammatory and malignant disorders, including lung inflammatory disorders, cardiovascular disease, ovarian cancer, breast cancer, and diabetes. In this review, we will focus on the role and molecular mechanisms of PARPs enzymes in inflammation- and metabolic-related diseases. Specifically, we discuss the molecular mechanisms and signaling pathways that PARP1 is associated with in the regulation of pathogenesis. Recently, increasing evidence suggests that PARP inhibition is a promising strategy for intervention of some diseases. Thus, our in-depth understanding of the mechanism of how PARPs are activated and how their signaling downstream effecters can provide more potential therapeutic targets for the treatment of the related diseases in the future is crucial.


Assuntos
Poli ADP Ribosilação/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Processamento de Proteína Pós-Traducional , Transdução de Sinais
10.
Eur J Pharmacol ; 837: 164-170, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30075222

RESUMO

Apoptosis is an essential type of programmed cell death. Previous studies have demonstrated that a wide range of natural-derived anticancer agents induce apoptosis by trigging oxidative stress. Artemisia argyi is a traditional Chinese herb for treating diverse diseases including dyspepsia, arthroncus, and anaphylactic disease. In this study, sesquiterpene lactone 3 (SL3), a bioactive ingredient isolated from Artemisia argyi was found to show obvious inhibitory effect on two gastric carcinoma cells. Mechanism study revealed that SL3 promoted the membrane translocation of p47, activated nicotinamide adenine dinucleotide (NADPH) oxidase, and evaluated intracellular reactive oxygen species production, leading to the activation of mitochondria-dependent caspase apoptosis pathway. Collectively, these findings show that SL3 is a promising anticancer candidate against gastric carcinoma by activating NADPH oxidase/reactive oxygen species/mitochondrial pathway.


Assuntos
Apoptose/efeitos dos fármacos , Artemisia/química , Lactonas/uso terapêutico , Mitocôndrias/fisiologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Caspase 3/fisiologia , Linhagem Celular Tumoral , Humanos , Poli(ADP-Ribose) Polimerases/fisiologia , Neoplasias Gástricas/patologia
11.
Nucleic Acids Res ; 46(17): 8908-8916, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30032250

RESUMO

During carcinogenesis, cells are exposed to increased replication stress due to replication fork arrest at sites of DNA lesions and difficult to replicate genomic regions. Efficient fork restart and DNA repair are important for cancer cell proliferation. We previously showed that the ADP-ribosyltransferase PARP10 interacts with the replication protein proliferating cell nuclear antigen and promotes lesion bypass by recruiting specialized, non-replicative DNA polymerases. Here, we show that PARP10 is overexpressed in a large proportion of human tumors. To understand the role of PARP10 in cellular transformation, we inactivated PARP10 in HeLa cancer cells by CRISPR/Cas9-mediated gene knockout, and overexpressed it in non-transformed RPE-1 cells. We found that PARP10 promotes cellular proliferation, and its overexpression alleviates cellular sensitivity to replication stress and fosters the restart of stalled replication forks. Importantly, mouse xenograft studies showed that loss of PARP10 reduces the tumorigenesis activity of HeLa cells, while its overexpression results in tumor formation by non-transformed RPE-1 cells. Our findings indicate that PARP10 promotes cellular transformation, potentially by alleviating replication stress and suggest that targeting PARP10 may represent a novel therapeutic approach.


Assuntos
Carcinogênese/genética , Proteínas de Neoplasias/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Sistemas CRISPR-Cas , Divisão Celular , Linhagem Celular Transformada , Dano ao DNA , Replicação do DNA , Feminino , Técnicas de Inativação de Genes , Células HeLa , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/deficiência , Poli(ADP-Ribose) Polimerases/deficiência , Proteínas Proto-Oncogênicas/deficiência , Epitélio Pigmentado da Retina/citologia , Regulação para Cima
12.
Nucleic Acids Res ; 45(21): 12325-12339, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036662

RESUMO

Double strand breaks (DSBs) are one of the most toxic lesions to cells. DSB repair by the canonical non-homologous end-joining (C-EJ) pathway involves minor, if any, processing of the broken DNA-ends, whereas the initiation of DNA resection channels the broken-ends toward DNA repair pathways using various lengths of homology. Mechanisms that control the resection initiation are thus central to the regulation to the choice of DSB repair pathway. Therefore, understanding the mechanisms which regulate the initiation of DNA end-resection is of prime importance. Our findings reveal that poly(ADP-ribose) polymerase 2 (PARP2) is involved in DSBR pathway choice independently of its PAR synthesis activity. We show that PARP2 favors repair by homologous recombination (HR), single strand annealing (SSA) and alternative-end joining (A-EJ) rather than the C-EJ pathway and increases the deletion sizes at A-EJ junctions. We demonstrate that PARP2 specifically limits the accumulation of the resection barrier factor 53BP1 at DNA damage sites, allowing efficient CtIP-dependent DNA end-resection. Collectively, we have identified a new PARP2 function, independent of its PAR synthesis activity, which directs DSBs toward resection-dependent repair pathways.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Poli(ADP-Ribose) Polimerases/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína BRCA1/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Reparo do DNA por Junção de Extremidades , Endodesoxirribonucleases , Humanos , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação
13.
Sci Rep ; 7(1): 14035, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070863

RESUMO

Poly-ADP-ribose-polymerases (PARPs) 1 and 2 are nuclear enzymes that catalyze the poly-ADP-ribosylation of nuclear proteins transferring poly-ADP-ribose (PAR) polymers to specific residues. PARPs and PAR intervene in diverse functions, including DNA repair in the nucleus and stress granule assembly in the cytoplasm. Stress granules contribute to the regulation of translation by clustering and stabilizing mRNAs as well as several cytosolic PARPs and signaling proteins to modulate cell metabolism and survival. Our study is focused on one of these PARPs, PARP12, a Golgi-localized mono-ADP-ribosyltransferase that under stress challenge reversibly translocates from the Golgi complex to stress granules. PARP1 activation and release of nuclear PAR drive this translocation by direct PAR binding to the PARP12-WWE domain. Thus, PAR formation functionally links the activity of the nuclear and cytosolic PARPs during stress response, determining the release of PARP12 from the Golgi complex and the disassembly of the Golgi membranes, followed by a block in anterograde-membrane traffic. Notably, these functions can be rescued by reverting the stress condition (by drug wash-out). Altogether these data point at a novel, reversible nuclear signaling that senses stress to then act on cytosolic PARP12, which in turn converts the stress response into a reversible block in intracellular-membrane traffic.


Assuntos
Complexo de Golgi/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Linhagem Celular , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Estresse Oxidativo , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos , Transporte Proteico , Transdução de Sinais , Estresse Fisiológico
14.
Nucleic Acids Res ; 45(17): 10056-10067, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973445

RESUMO

ADP-ribosyltransferases promote repair of DNA single strand breaks and disruption of this pathway by Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) is toxic to cells with defects in homologous recombination (HR). Here, we show that this relationship is conserved in the simple eukaryote Dictyostelium and exploit this organism to define mechanisms that drive resistance of the HR-deficient cells to PARPi. Dictyostelium cells disrupted in exonuclease I, a critical factor for HR, are sensitive to PARPi. Deletion of exo1 prevents the accumulation of Rad51 in chromatin induced by PARPi, resulting in DNA damage being channelled through repair by non-homologous end-joining (NHEJ). Inactivation of NHEJ supresses the sensitivity of exo1- cells to PARPi, indicating this pathway drives synthetic lethality and that in its absence alternative repair mechanisms promote cell survival. This resistance is independent of alternate-NHEJ and is instead achieved by re-activation of HR. Moreover, inhibitors of Mre11 restore sensitivity of dnapkcs-exo1- cells to PARPi, indicating redundancy between nucleases that initiate HR can drive PARPi resistance. These data inform on mechanism of PARPi resistance in HR-deficient cells and present Dictyostelium as a convenient genetic model to characterize these pathways.


Assuntos
ADP Ribose Transferases/fisiologia , Dictyostelium/enzimologia , Resistência a Medicamentos/fisiologia , Recombinação Homóloga/fisiologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/fisiologia , Proteínas de Protozoários/fisiologia , Benzamidas/farmacologia , Células Clonais , Quinase 8 Dependente de Ciclina/deficiência , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/fisiologia , Dano ao DNA , Dictyostelium/efeitos dos fármacos , Dictyostelium/genética , Exodesoxirribonucleases/deficiência , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/fisiologia , Deleção de Genes , Indóis/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Quinazolinas/farmacologia , Rad51 Recombinase/deficiência , Rad51 Recombinase/fisiologia , Proteínas Recombinantes/metabolismo
15.
Oncology (Williston Park) ; 31(4): 265-73, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412778

RESUMO

The activity and therapeutic licensing of poly(ADP-ribose) polymerase (PARP) inhibitors is the culmination of 50 years of research. However, the biology, mechanisms of action, adequate treatment combinations, and targeted populations for these agents need to be explored further. PARP activity is essential for the repair of single-strand DNA breaks via the base excision repair pathway. This pathway is the default repair pathway in cells with deficient high-fidelity double-strand break homologous recombination (HR) repair, such as occurs with loss of BRCA1 or BRCA2 function. Therefore, inhibition of PARP function results in cell death in HR-deficient tumors, and sensitizes tumor cells to cytotoxic agents that induce DNA damage. Applications of PARP inhibition are now being expanded beyond tumors with HR deficiency-to HR-competent tumors in which HR has been synthetically impaired through use of other agents given in combination with PARP inhibitors, or resulting from PARP inhibition in the setting of BRCA1 or BRCA2 loss.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Reparo do DNA , Recombinação Homóloga , Humanos , Neoplasias/genética , Poli(ADP-Ribose) Polimerases/fisiologia
16.
Cardiovasc Toxicol ; 17(4): 393-404, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28050758

RESUMO

Highly active anti-retroviral therapy has proved successful in reducing morbidity and mortality associated with HIV infection though it has been linked to increased risk of cardiovascular disease. To date, the direct effects of the anti-retroviral drugs Efavirenz, Tenofovir and Emtricitabine on the vasculature relaxant response have not been elucidated, which impaired may predispose individuals to cardiovascular disease. Increased cellular oxidative stress and overactivation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP) have been identified as central mediators of vascular dysfunction. The aim of this study was to investigate whether exposure to Efavirenz, Tenofovir or Emtricitabine directly causes endothelial cell dysfunction via overactivation of PARP. Exposure of ex vivo male rat aortic rings or in vitro endothelial cells to Efavirenz but not Tenofovir or Emtricitabine impaired the acetylcholine-mediated relaxant response, increased cellular oxidative stress and PARP activity, decreased cell viability and increased apoptosis and necrosis. Pharmacological inhibition of PARP protected against the Efavirenz-mediated impairment of vascular relaxation and endothelial cell dysfunction. Oestrogen exposure also protected against the Efavirenz-mediated inhibition of the vascular relaxant response, cell dysfunction and increased PARP activation. In conclusion, Efavirenz directly impairs endothelial cell function, which may account for the increased risk of developing cardiovascular complications with anti-retroviral therapy.


Assuntos
Antirretrovirais/farmacologia , Benzoxazinas/farmacologia , Emtricitabina/farmacologia , Endotélio Vascular/enzimologia , Poli(ADP-Ribose) Polimerases/fisiologia , Tenofovir/farmacologia , Alcinos , Animais , Antirretrovirais/toxicidade , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Benzoxazinas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ciclopropanos , Relação Dose-Resposta a Droga , Emtricitabina/toxicidade , Endotélio Vascular/efeitos dos fármacos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Tenofovir/toxicidade
17.
J Shoulder Elbow Surg ; 26(5): 733-744, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28131694

RESUMO

BACKGROUND: Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. METHODS: PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. RESULTS: The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. DISCUSSION: Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks.


Assuntos
Atrofia Muscular/etiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Lesões do Manguito Rotador/patologia , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/patologia , Lesões do Manguito Rotador/diagnóstico por imagem , Lesões do Manguito Rotador/etiologia , Tenotomia
18.
Nucleic Acids Res ; 45(5): 2546-2557, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27965414

RESUMO

A critical step of DNA single-strand break repair is the rapid recruitment of the scaffold protein XRCC1 that interacts with, stabilizes and stimulates multiple enzymatic components of the repair process. XRCC1 recruitment is promoted by PARP1, an enzyme that is activated following DNA damage and synthesizes ADP-ribose polymers that XRCC1 binds directly. However, cells possess two other DNA strand break-induced PARP enzymes, PARP2 and PARP3, for which the roles are unclear. To address their involvement in the recruitment of endogenous XRCC1 into oxidized chromatin we have established 'isogenic' human diploid cells in which PARP1 and/or PARP2, or PARP3 are deleted. Surprisingly, we show that either PARP1 or PARP2 are sufficient for near-normal XRCC1 recruitment at oxidative single-strand breaks (SSBs) as indicated by the requirement for loss of both proteins to greatly reduce or ablate XRCC1 chromatin binding following H2O2 treatment. Similar results were observed for PNKP; an XRCC1 protein partner important for repair of oxidative SSBs. Notably, concentrations of PARP inhibitor >1000-fold higher than the IC50 were required to ablate both ADP-ribosylation and XRCC1 chromatin binding following H2O2 treatment. These results demonstrate that very low levels of ADP-ribosylation, synthesized by either PARP1 or PARP2, are sufficient for XRCC1 recruitment following oxidative stress.


Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Simples , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poli(ADP-Ribose) Polimerase-1/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Deleção de Genes , Humanos , Camundongos , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
19.
Cancer Res ; 76(20): 6084-6094, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27550455

RESUMO

The PARP inhibitor AZD2461 was developed as a next-generation agent following olaparib, the first PARP inhibitor approved for cancer therapy. In BRCA1-deficient mouse models, olaparib resistance predominantly involves overexpression of P-glycoprotein, so AZD2461 was developed as a poor substrate for drug transporters. Here we demonstrate the efficacy of this compound against olaparib-resistant tumors that overexpress P-glycoprotein. In addition, AZD2461 was better tolerated in combination with chemotherapy than olaparib in mice, which suggests that AZD2461 could have significant advantages over olaparib in the clinic. However, this superior toxicity profile did not extend to rats. Investigations of this difference revealed a differential PARP3 inhibitory activity for each compound and a higher level of PARP3 expression in bone marrow cells from mice as compared with rats and humans. Our findings have implications for the use of mouse models to assess bone marrow toxicity for DNA-damaging agents and inhibitors of the DNA damage response. Finally, structural modeling of the PARP3-active site with different PARP inhibitors also highlights the potential to develop compounds with different PARP family member specificity profiles for optimal antitumor activity and tolerability. Cancer Res; 76(20); 6084-94. ©2016 AACR.


Assuntos
Neoplasias Experimentais/tratamento farmacológico , Ftalazinas/farmacologia , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Animais , Medula Óssea/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Descoberta de Drogas , Genes BRCA1 , Humanos , Camundongos , Ftalazinas/administração & dosagem , Ftalazinas/toxicidade , Piperazinas/administração & dosagem , Piperidinas/toxicidade , Poli(ADP-Ribose) Polimerases/química , Ratos , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
20.
PLoS One ; 11(3): e0151845, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986624

RESUMO

Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose) polymerase 1 (PARP1). Biguanides and angiotensin II receptor blockers (ARBs) such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs), diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK) phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosyl)ation (PARylation), but increased endothelial nitric oxide synthase (eNOS) activity and silent mating type information regulation 2 homolog 1 (SIRT1) expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Cardiotônicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metformina/farmacologia , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Western Blotting , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Glipizida/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Metoprolol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/fisiologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Reação em Cadeia da Polimerase em Tempo Real , Telmisartan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...